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Abstract

We present the formulation of a conservative spectral scheme for Boltz-
mann collision operators with anisotropic scattering mechanisms to model
grazing collision limit regimes approximating the solution to the Lan-
dau equation in space homogeneous setting. The scheme is based on the
conservative spectral method of Gamba and Tharkabhushanam [17, 18].
This formulation is derived from the weak form of the Boltzmann equa-
tion, which can represent the collisional term as a weighted convolution
in Fourier space. Within this framework, we also study the rate of con-
vergence of the Fourier transform for the Boltzmann collision operator
in the grazing collisions limit to the Fourier transform for the Landau
collision operator for a family of non-integrable angular scattering cross
sections. We analytically show that the decay rate to equilibrium depends
on the parameters associated with the collision cross section, and specif-
ically study numerically the differences between the classical Rutherford
scattering angular cross section, which has logarithmic error in approxi-
mating Landau, and an artificial cross section with a linear error.

Keywords: Spectral methods, Boltzmann Equation, Landau-Fokker-Plank
equation, grazing collisions.

1 Introduction

The initial drive of this manuscript was based on the study of simulating the
Boltzmann equation’s dynamics in the grazing collision limit of anisotropic, sin-
gular angular scattering cross section by spectral methods. During the search for
suitable computational schemes using basic facts of Fourier space calculations,

*Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Stop
C1200 Austin, Texas 78712 and ICES, The University of Texas at Austin, 201 E. 24th St.,
Stop C0200, Austin, TX 78712

tDepartment of Mathematics, The University of Texas at Austin, 2515 Speedway, Stop
C1200 Austin, Texas 78712



we found an analytical argument that not only gives an explicit representation
of the effect of angular averaging for well balanced collisional mechanisms for
a family of singular grazing collision angular cross sections, but also exhibits
the rate of approximation for the difference of the Boltzmann collisional and
Landau operators, measured in Fourier space, when evaluated on solutions of
the Boltzmann initial value problem that are assumed to have a boundedness
condition in Fourier space. The bulk of this manuscript will address both the
numerical and analytical aspects of the so called grazing collision limit approxi-
mations of the Boltzmann equation in physically relevant regimes that includes
Rutherford-Coulombic potential scattering mechanisms.

While numerical methods for solving the classical Boltzmann equation gen-
erally use the assumption of spherical particles with ’billiard ball’ like collisions,
however, a more physical model is to assume that particles interact via long
range two-body potentials. Under this derivation the Boltzmann equation can
be formulated in a very similar manner [11], but in this case the scattering cross
section is highly anisotropic. In many cases, such as the physically relevent
case of Coulombic interactions between charged particles, the derivation of the
Boltzmann equation breaks down completely due to the singular nature of the
scattering cross section. Physical arguments by Landau [21] as well as a later
derivation by Rosenbluth et al. [27] showed that the dynamics of the Boltzmann
equation can approximated by a Fokker-Planck type equation when grazing col-
lisions dominate, generally referred to as the Landau or Landau-Fokker-Planck
equation. Later work [5, 13, 12, 30, 2] more rigorously justified this asymptotic
limit.

Many numerical methods have been developed for solving the full Landau
equation, some stochastic [29, 22] and some deterministic [25], however very few
methods have been developed to compute in the transition regime between the
Boltzmann and Landau equations. The small parameter used to quantify this
limit is related to the physical Debye length, which quantifies the distance at
which particles are screened from interaction, and a heuristic minimum interac-
tion distance for the grazing collisions assumption to hold. Other non-grazing
effects from the Boltzmann equation may remain relevant [15] which makes
development of numerical methods based on the Boltzmann equation itself rele-
vant for plasma applications. To our knowledge the only numerical method that
makes this distinction explicit is the recently proposed Monte Carlo method for
the Landau equation of Bobylev and Potapenko [7], which grew out of the work
of Bobylev and Nanbu [6]. Pareschi, Toscani, and Villani [26] showed that the
weights of their spectral Galerkin method for the Boltzmann equation converged
to the weights of a similar method for the Landau equation, but no computa-
tions were done in the transition regime. This work seeks to bridge that gap
using the conservative spectral method for the Boltzmann equation developed
by Gamba and Tharkabhushanam [17, 18].

There are many difficulties associated with numerically solving the Boltz-
mann equation, most notably the dimensionality of the problem and the con-
servation of the collision invariants. For physically relevant three dimensional
applications the distribution function is seven dimensional and the velocity do-



main is unbounded. In addition, the collision operator is nonlinear and requires
evaluation of a five dimensional integral at each point in phase space. The col-
lision operator also locally conserves mass, momentum, and energy, and any
approximation must maintain this property to ensure that macroscopic quanti-
ties evolve correctly.

Spectral methods are a deterministic approach that compute the collision
operator to high accuracy by exploiting its Fourier structure. These methods
grew from the analytical works of Bobylev [8] developed for the Boltzmann
equation with Maxwell type potential interactions and integrable angular cross
section, where the corresponding Fourier transformed equation has a closed
form. Spectral approximations for these type of models where first proposed
by Pareschi and Perthame [23]. Later Pareschi and Russo [24] applied this
work to variable hard potentials by periodizing the problem and its solution
and implementing spectral collocation methods.

These methods require O(N?2?) operations per evaluation of the collision op-
erator, where IV is the total number of velocity grid points in each dimension.
While convolutions can generally be computed in O(N%log N) operations, the
presence of the convolution weights requires the full O(N?4) computation of
the convolution, except for a few special cases such as hard spheres in 3D and
Maxwell molecules in 2D. Spectral methods advantages over Direct Simulation
Monte Carlo Methods (DSMC) in many applications, in particular time depen-
dent problems, low Mach number flows, high mean velocity flows, and flows
that significantly deviate from equilibrium. In addition, deterministic methods
avoid the statistical fluctuations that are typical of particle based methods.

Inspired by the work of Ibragimov and Rjasanow [20], Gamba and Thark-
abhushanam [17, 18] observed that the Fourier transformed collision operator
takes the form of a weighted convolution and developed a spectral method based
on the weak form of the Boltzmann equation that provides a general framework
for computing both elastic and inelastic collisions. Macroscopic conservation
is enforced by solving a numerical constrained optimization problem that finds
the closest distribution function in the computational domain to the output of
the collision term that conserves the macroscopic quantities. These methods
do not impose periodization on the function but rather assume that solution of
the underlying problem on the whole phase space is obtained by the use of the
Extension Operator in Sobolev spaces [3].

The proposed computational approach, is complemented by the analysis of
the approximation from the Boltzmann equation for grazing collision to the
Landau operators by estimating the L°°-difference of their Fourier transforms
evaluated on the solution of the corresponding Boltzmann equation, as they
both can be easily expressed by a weighted convolution structure in Fourier
space. We show that this property hold for a large family of singular angular
scattering cross sections, whose parameters € will control the approximation
rate of such e-grazing collision limit.

More specifically, in Theorem 1 we prove that if the probability density func-
tion f.(v) satisfies the condition F(f: muf:)(¢) < A(C)/(1 + |ul?) for A(¢) <
k(14 |¢])~? uniformly in RY, where f.(v) = f.(v,t) is the solution of the Boltz-



mann equation for the e-grazing collision family associated with an angular cross
section b.(cos ) given in within a class of singular functions satisfying suitable
properties for such limit to be realized. Our analysis shows this approxima-
tion e-rate of convergence explicitly depends on the rate of the non-integral
singularity rate associated to e-grazing collision angular cross section.

In particular the Rutherford angular scattering [28] cross section family de-
pending on an e-logarithmic parameter belongs to these admissible family of
scattering mechanisms is shown to be the smallest singular behavior the fam-
ily of e-grazing collision angular cross section may have in order to obtain the
Landau limit. From this point of view, Rutherford angular scattering [28] is the
critical case of grazing collision limit to Landau operator in the sense that any
other angular singularity that is admissible for this grazing collision limit to the
Landau operator in Fourier space is stronger than the one for the Rutherford
one, and so its e-decay of approximation will be faster.

More specifically, our result shows that the L°°-difference of the Fourier
transforms of Landau operator (Q;, and the Boltzmann for grazing collisions
operator Q. acting on f.(v) converges to zero with an e-logarithmic rate as
e — 0. In particular, we show by numerical means that the convergence of
the computed solution of the Boltzmann equation to the corresponding one
the Landau equation is e-logarithmic slow when using the physically relevant
Rutherford angular cross section, while is much faster with e-linear decay when
using an e-grazing collision angular cross section with a stronger singularity
at the vanishing scattering angle. This example benchmarks the nature of the
approximation of the grazing collision limit of the Boltzmann solutions to the
ones of the Landau equation, depending on the singularity and corresponding
rates of decay of grazing limits associated to the angular functions. These
analytical facts are carefully discussed in Section 3 of this manuscript, while
numerical aspects are in Sections 4 and 5.

This article is organized as follows. In Section 2, we present the derivation
of the spectral formulation of the collision operator for an arbitrary anisotropic
scattering cross section. In Section 3 we present the Landau equation and
apply a class of cross sections formulated by Villani [31] and Bobylev [7] within
our spectral formulation to study the grazing collisions limit of the Boltzmann
equation. In particular, we proved Theorem 1 in order to obtain the rate of
asymptotic convergence from the Boltzmann collision operator to the Landau
collision operator with a large family of angular singularities that includes the
classical screened Rutherford potential for Coulombic interactions and more.
In Section 4, we present the details of the numerical method based on this
formulation and provide some practical observations on its implementation. In
Section 5, we numerically investigate the method’s performance for small but
finite values of the grazing collision parameter. We conclude with a discussion
of future work in this area.



2 The space homogeneous Boltzmann equation

The space homogeneous Boltzmann equation is given by the initial value prob-
lem
0

1
& (V,t) = ﬂ@(fv f)7 (1)
with

veR:  f(v,0)= fo(v)

where f(v,t) is a probability density distribution in v-space and fj is assumed
to be locally integrable with respect to v. The dimensionless parameter Kn > 0
is the scaled Knudsen number, which is proportional to the ratio between the
mean free path between collisions and a reference macroscopic length scale.
The collision operator Q(f, f) is a bilinear integral form in (v,t) given by

QN = [ [ Byl eost) (V) = fv) f(¥)dod.
® g (2)

where the velocities v/, v’ are determined through a given collision rule de-
pending on v,v,. The positive term of the integral in (2) evaluates f in the
pre-collisional velocities that can result in a post-collisional velocity the direc-
tion v. The collision kernel B(|v — v.|,cosf) is a given non-negative function
depending on the size of the relative velocity u := v—v, and cos = ﬁ, where

o in the n— 1 dimensional sphere S"~! is referred to as the scattering direction,
which coincides with the direction of the post-collisional elastic relative velocity.
For the following we will use the elastic (or reversible) interaction law

Vevi(ulo—w),  vi=v— (o —u) (3)
B(|u|,cos0) = |u|*b(cos 0) .

The angular cross section function b(cos ) may or may not be integrable with
respect to o on S9!, The case when integrability holds is referred to as the
Grad cut-off assumption on the angular cross section.

The parameter A regulates the collision frequency as a function of the relative
velocity |u|. This parameter corresponds to the inter particle potentials used in
the derivation of the collisional kernel and choices of A are denoted as variable
hard potentials (VHP) for 0 < A < 1, hard spheres (HS) for A = 1, Maxwell
molecules (MM) for A = 0, and variable soft potentials (VSP) for —3 < A < 0.
The A = —3 case corresponds to a Coulombic interaction potential between
particles. If b(cos @) is independent of o we call the interactions isotropic, e.g.,
in the case of hard spheres in three dimensions.



2.1 Spectral formulation for anisotropic angular cross sec-
tion
The key step our formulation of the spectral numerical method is the use of the

weak form of the Boltzmann collision operator [17]. For a suitably smooth test
function ¢(v) the weak form of the collision integral is given by

QS fe(v)dv = / F)f(v)B(Jul, cos 0)(d(v') = ¢(v))dodv.dv
R4 R

dxRIxSd—1
(4)

If one chooses ‘
$(v) = eV /(Vam)?,
then (4) is the Fourier transform of the collision integral with Fourier variable

¢:
-1 e Vv

_ v v B(|u|,cos€) efi(:-v'_efi(v odv.dv
Lo o 070 % Jdodv.d
= [, G OF L f (v = w) O, o)

where [A] = F(-) denotes the Fourier transform and

Go(w.O) = lul* [

b(cos 6) (e‘iéc'lu“’ei%cu - 1) do (6)
Sd—1

Further simplification can be made by writing the Fourier transform inside the
integral as a convolution of Fourier transforms:

Q0 = | Gl 0FC~ 9 fte)as. (7

where the convolution weights @({ ,() are given by

Gy(£,¢) = Gy(u,Q)e " du (8)

1
(V2m)d Jaa

1 A —i&u —ii¢|u|o jit¢u
= (\/TT)d g Ju| e~ /qu b(cos ) <e 2ClulogizCu _ 1) dodu
These convolution weights can be precomputed once to high accuracy and stored
for future use. For many collisional models, such as isotropic collisions, the
complexity of the integrals in the weight functions can be reduced dramatically
through analytical techniques [17, 18]. However in this paper we make no as-
sumption on the isotropy of b and derive a more general formula. We remark
that this formulation does not separate the gain and loss terms of the colli-
sion operator, which is important for obtaining the correct cancellation in the
grazing collision limit below.



We begin with Gj(u, () and define a spherical coordinate system for ¢ with
a pole in the direction of u, i.e. let o = cos Hﬁ +sinfw, w € S92, We obtain

Gy(u,() = |u\)‘/ / b(cosf)sin (ei%(lfcos 0)¢up—izlulsind(Cw) _ 1) dfdw.
0 Jgd-2
9)

In three dimensions, the unit vector ¢ = cos Q\TUI + sin f(jsin ¢ + kcos ¢),
where j, k are mutually orthogonal vectors with u. Thus the right hand side of
(9) becomes

T a—+T
|U‘/\/ / b(cos ) sin 6§ (61%(1_‘:08 0)¢-up—izlulsinO(C-jsin g+ -keosd) _ 1) dode,
0 a—m

for a to be justified below.
Using the trigonometric identity

(¢-J)sing + (¢ -k)cosg = /(¢ -§)* + (¢ k)?sin(¢ + ),

for a unique vy € [—m, 7], the integration with respect to the azimuthal angle ¢
is equivalent to

a—y+m

Ga.0) = ful* [ blcos)sino <eié<1cos0><-u /
0 «

T . a—y+m/2 » )
_ |u‘)\/ b(COS 0) sin 6 (ezz(l—cose)(-u/ ezé\u|s1n0‘cl|cos¢d¢ _ 2’/T> dob,
0 «

—y—3m/2

efi%\u| sin |¢ | sin ¢d¢ . 271'> d@,

—y—7

where ¢+ = ¢ — (¢-u/[u|)u/|u|. Finally, let a = v+ /2, then by symmetry we
obtain

Gb(u,g) _ |’U;‘)\/ b(COS 9) sin @ (eié(l—cosﬁ)g-UQ/ ei%|u\sin€‘<i-|cos¢d¢ _ 277) do
0 0

™ : 1
= 27T|u\)‘/ b(cosf)sin 6 <eié(1_°059)<‘“J0 (W) - 1) de,
0
(10)

where Jy is the Bessel function of the first kind (see [1] 9.2.21). Note that for
the isotropic case the angular function b(cos#) is constant and thus ¢ can be
used instead of u as the polar direction for o, resulting in an explicit expression
involving a sinc function [17].

Next, we take é;, to be the Fourier transform of (g, where this transform is
taken on a ball centered at 0 in order to ensure that the weights are real-valued
when computing them numerically.



Then, the convolution weights @b(C ,€) from (8), written in 3 dimensions,
are computed as follows

G(¢, &) =2 /

|u\)‘e_i5'“/ b(cosf)sin
B, (0) 0

i 1
X {eﬁ‘“(l‘COSG)JO <2u||§L|sin0> - 1} dfdu

:271'/ / TAH/ b(cos ) sin 6
0o Js? 0

4 ‘ 1 .
X {e_”(g_g(l_COba))'”JO (2TCL| sin 9) — e_”g‘"] dfdndr.

We now take ¢ to be the polar direction for the spherical integration of 7
and use that Gy is real-valued to obtain
N L ™ ™
Gp(¢,€) :47T2/ r’\+2/ / b(cos ) sin f siny.Jy (7" sin’y)
0 o Jo
¢
|

X lcos (T(f - g(l —cosh)) - i cosv) Jo (;TQ sinvsin@)

_&¢
STaE

— cos <r§ . % cos A/) 1 dfd~dr, (11)

where + is the polar angle for the 7 integration.

This requires a three dimensional integral for the N° pairs (¢, £), which is two
dimensions more than the isotropic case, but just as in the isotropic case these
weights are precomputed only once and re-used in any subsequent computations
with the collisional model.

3 The grazing collisions limit and convergence
to the Landau collision operator

3.1 The Landau collision operator

The Landau collision operator describes binary collisions that only result in very
small deflections of particle trajectories, as is the case for Coulomb potentials
and Rutherford scattering [28] between charged particles. This can be shown
to be an approximation of the Boltzmann collision operator in the case where
the dominant collision mechanism is that of grazing collisions. The operator is
given by

u®u

Quls.f) = o ( [ WP = EED G0T 1) - ST D)
(12)




and the weak form of this operator is given by [26]

Qu(f, H)é(v)dv = / fV)F(v)
R3 R3 JR3

u®u

X (—4|mu.v¢+ |2 (I— 2 :v%)) dvdv, ,

where V2¢ denotes the Hessian of ¢ and ‘: is the matrix double dot product.
As done in the Boltzmann case above, we choose ¢ to be the Fourier basis
functions and obtain after some calculation

Qr(¢) = W /R UMV =wHO) <4z'|u|*(u Q) - |u|*+2|<L|2> du,
(13)

where ¢+ = ¢ — (¢ - u)/|u|? u, the orthogonal component of ¢ to u. Thus the
weight function G, (u, ) in terms of (6) is now given by

Gr(u,¢) = [ul(i(u- ¢) = [ul’[¢H ). (14)

The C/J\L used in the final computation is the Fourier transform of Gj with
respect to u, but we will work with this representation to make the convergence
analysis below more clear.

3.2 The grazing collisions limit

To show that the spectral method for Boltzmann operator is consistent with this
form of the Landau operator, we must take the grazing collisions limit, which
requires that the angular scattering function is consistent with the singular rates
of Rutherford-like scattering. Indeed, it is enough to assume that the collision
kernel satisfies the following.

Let £ > 0 be the small parameter associated with the grazing collisions limit.
A family of kernels b. () represents grazing collisions if [2, 7]:

e—0

. lim 277/ b(cos B) sin®(0/2) sinfdh = Ay < oo
0

0 for £>0. (15)

e—0

. 27r/ be(cos B)(sin(/2))*+* sin do—
0

) Vo > 0, b.(6)—._,,0 uniformly on 6 > 6.

These conditions as sufficient show that the collisional integral operator con-
verges to the Landau operator at a rate that depends on the choice of the angular
function b.(cos @) as it will be shown in Theorem 3.1.



In fact, there are several angular functions that have been widely used in
the calculation of collisional theory with Coulombic potentials (see [7].) The
more significant and perhaps physically meaningful is the one of the classical
Rutherford scattering corresponding to a family b.(cos 8) given by

sin 6
—nlogsin(e/2) sin*(6/2)

be(cosf)sinf = Lo>e. (16)

This e-parameter family satisfies conditions (15). We note that the logarithmic
term that appears here is the Coulomb logarithm originally derived by Landau
[21], where € is proportional to the ratio between the mean kinetic energy of the
gas and the Debye length.

Another angular cross section that satisfies conditions (15) is given by

. 8¢
be(cosf)sinf = ngz‘g, (17)

which we will refer to as the e-linear cross section. While this cross section is
not physically motivated, it is useful for numerical convergence studies. Other
angular cross sections that satisfy conditions (15) have been used in DSMC
methods for computing the Landau equation; for an overview see [7].

In fact it is possible to identify a large family of possible angular function
choices corresponding to long range two body interaction potentials that in-
cludes both the one for the Rutherford-Coulombic one (16) and the e-linear one
(17), the former being the critical case for the grazing collision limits.

3.3 A family of angular cross sections for long range in-
teractions

We next introduce a family of long range interaction potentials with a classical
small angle cut-off parameter of order e that will satisfy conditions (15). For this
oppose we first introduce two functions H(z) and C(x) related to the angular
cross section function b..

The first one is defined such that its derivative satisfies H'(z) = b(1—2x2)a3.
The motivation for this choice of function is due to the representation of the
angular cross section function b(4 - o) written in terms of sin(6/2), taking into
account the Jacobian to the spherical transformation and the needed singularity
cancellation from the first bullet condition in (15).

Indeed, setting « = sin(0/2) yields

H'(z)dx = b(1 — 222)x3dx = %b(cos 0) sin®(6/2) cos(6/2)db
= ib(cos 0) sin(0/2) sin(0)d = %b(cos 0)(1 — cosf)sin(f)dd  (18)

By the first bullet condition (15), H'(z) is integrable in [0, 1]

10



Similarly, we define a function C'(z) such that C’(x) = b(1 — 222?)2°. Then,
as computed in (18), this function evaluated at z = sin(6/2) yields

C'(x)dx = b(1 — 22?)z°dx = %b(cos 0) sin®(0/2) cos(6/2)do
= ib(cos 6) sin?(6/2) sin(#)df = 1—1617((308 0) sin(0)(1 — cos 0)?dd (19)

By the second bullet condition (15), C’(z) is also integrable in [0, 1].
In addition, in order to satisfy the third bullet condition (15), it is sufficient
that the angular function b(cos ) is singular enough such that

lim (—H (sin(g/2))) "' = 0 and (20)
e—=0
max{|H (1), \C(l)lvsglg |C(sin(e/2))|} <T
e>
for some constant I" depending only on the functions H and C.

In this way the e-dependent angular cross section can be written in terms of
the H function as follows

be(ti - 0)do = mb(cos ) sin(0)1p>c dpdd
1 H'(x)

= 1o>si dxd 21
T H(m(E)2)) a? wsin(/2) dedd (21)
and, by the condition (20), also satisfies the third bullet condition (15).
One can easily inspect that when the angular function b(cos ) is taken of

the form
1

b o) = S5 672 22
(U 0') Sin4+5 (9/2) ( )
then the function H(x) can be explicitly computed from (21)
1 1
bs i - do = . 0 1 Ed dg
(G- 0)do —wH(sin(e/Z))sin4+6(9/2) sin(0)1g>c do
1 2
- d(sin(0/2))1g>.dod 2

—mH(sin(e/2)) sin®*+*(6/2) (sin(60/2))1p>cd0dp  (23)

1 11

T “rH(sin(g/2)) 2149 22 Lo2sin(e/2) d2do.

Thus, H(x) is the antiderivative of z~(*%) and has the form
-5
H(x):—%, for § >0 and H(z)=logz, ford=0. (24)

In addition, the corresponding function C' as defined in (19) satisfies

C'(z)dx = sin®(0/2) cos(6/2)do

1
sin*9(0/2)
= sin'9(0/2)dsin(0/2) = 2 Odx (25)

11



The choice of the exponent § must be done in order to satisfy the third bullet
condition (15), i.e. conditions (20) for both H(x) and C(x) functions.

In fact, a sufficient condition is that 0 < § < 2.

The case § = 0 yields the classical Rutherford-Coulombic potential where

H(z) =logz and Cf(x)=x?/2 (26)

These two functions satisfy conditions (20), as H (sin(7/2)) = 0, C(sin(w/2)) =
1/2, C(sin(e/2)) = sin?(¢/2)/2 are uniformly bounded for £ > 0 and

1 1
lim ————— =lim ————— = 0.
=50 —H (sin(e/2)) e - log(sin(g/2)) 0
For § > 0, the H(x) and C(x) functions become
.13_6 x2—6
H(x)=—— = . 2
(x) 5 and C(x) 5 5 (27)

These two functions also satisfy conditions (20), as H (sin(7/2)) = —1, C(sin(7/2)) <
(2 —6)71,C(sin(e/2)) < (2 — §)~! is bounded and

. . N

eh—rf(l) —H(sin(/2)) &11_13(1) sin~%(e/2) eh—rf(l) 2 = 0-

Finally, notice that the case § = 1 corresponds to the the e-linear cross section
(17), as sin(6/2) = 6/2 as § — 0.

The critical case of § = 0 corresponds to the Rutherford-Coulombic potential
(16), for which the Landau limit would be possible. Clearly, this case is the
smallest value of the exponent in the singularity of the cross section written in
negative powers of sin(6/2) such that the bullet conditions (15) for the grazing
collision limit are satisfied. In this sense the Rutherford-Coulombic potential (16)
1s the critical case for which for which the Boltzmann operator can converge to
the Landau operator.

In addition, this family breaks down when § > 2 as condition (20) would
not be satisfied on C(sin(e/2)). We will actually show in Theorem 3.1 that this
value of § is the critical one at which more terms in the Taylor expansion for
the angular cross-section contain singularities, and the second term would need
a similar treatment for C'(z) as was done for H(z) (see the first terms of the
expansions in equations (34) and (35).)

3.4 The grazing collision approximation Theorem

In the following theorem we estimate the difference of the grazing collision limit
for the Boltzmann solutions evaluated at the collisional integral and Landau
operators for a class of cross sections given by the general form of angular cross
sections satisfying (21).

12



In addition, we will show in Section 5 the numerically computed logarithm of
the entropy decay associated to the solution of the initia value problem for the
boltzmann equation for the Rutherford-Colombic potential cross section (16)
and observe that, as expected from the result of Theorem 3.1, the decay rate
for the Rutherford e-logarithmic cross section (16) is much faster than the one
for the e-linear decaying cross section (17), and the latter one actually mimics
the entropy decay rate of the Landau equation. This is in fact an expected
observation, as we explain in the forthcoming pages.

We begin by taking a look at the grazing collisions limit for angular cross
sections satisfying conditions (21), and all related conditions for the functions
H and C as defined in the previous section.

Theorem 3.1 Assume that f. satisfies

A

[ F{f(v) fe(v—u)}(Q)] < T (28)

with A uniformly bounded by k(1+|C|)~°, with k constant, the angular scattering
cross section b(cos ) satisfies conditions in (21) related to the H function in (18)
satisfying conditions (20), and A = —3, corresponding to Coulombic interactions
between particles.

Then the rate of convergence of the Boltzmann collision operator with grazing
collisions to the Landau collision operator is given by

1Q2lr) ~ @olfll, ey < O ) L0 aseo0. (29)

1
(IH(Sin(€/2))|
Proof : With this angular cross section and A = —3, the calculation for the
weight function Gy, (¢, u) can be computed by Taylor expanding the exponential
term in (6) to obtain, in terms of the polar and azimuthal angles 6 and ¢,
respectively, and ssociated to the change of coordinates o = cos Oﬁ +sin Qw, w €

592 yged in Section 2.1:

Go(Cu) = |u\—3/ bo(it - o) (e 5 (Hlo=w) _ 1), (30)
52
_ |u\—3/52 b€<a.a);%! (“; - |u|<'2"> do .

As a consequence, the following representation for the weight function Gy_(¢, u)

13



holds

3 27
Gy, (¢, \u| / b(cosf)sin @
i 1—cos€ u|sind . . "
xzn'< < ) _| |2 (g-Jsm¢+g-kcos¢)> dpdo

-3 27
|u| / / b(cosf)sin (31)

ZZ sin” 9/2 (- Csin(0/2) — [uf cos(6/2)(¢ - jsing + ¢ - keos ¢))" dpdo,

where j, k are unit vectors mutually orthogonal with u arising from the choice of
spherical coordinates. We stress that this expansion occurs in the convolution
weights in this formulation rather than the distribution function as is done in
other derivations of the grazing collisions limit.

Next we calculate the terms in this expansion in order to explicitly determine
its leading order in terms in € and to estimate the remainder. Expanding the
binomial terms in G}, and using the identity sin 6 = 2 cos(6/2) sin(6/2) yields

. JZLLZ | f: Z i (i”(u O P (1) (¢ DR k)Y (;L) @)

n!

™ ) ) 2 )
X (/ cos?T1(0/2) sin®"~IT1(0/2)b(cos 0) d9> (/ sin® ¢ cos’ " ¢ d¢>
€ 0

(32)
IUI N

ZGb n Ca

At this point we separate the n = 1,2 cases from the rest, as the € integrand
for n > 3 is bounded independently of e.

First we observe that for n = 1,2, Gy, ,((,u) is explicitly calculated from
(31), yielding

jul )
—nh(e )(Gbsvl"'GbEQ)(C:u)) =
2ul* (" sin(0/2)
“rh(z / b(cos ) sin(6/2) cos(0/2) (zsm 0/2)(u-¢) — —

X ((u -¢)%sin?(0/2) — (2 — i) |u|(u - ¢) sin(0/2) cos(8/2)((¢ - jsin ¢ + ¢ - kcos p)

+ [uf* cos®(8/2)((¢ - j) sin ¢ + (¢ - k) cos ¢>)2))> dpdf (33)

14



We note that fo%(sinm @, cos™ ¢)dgp = 0 for odd m and further obtain

2

_'/Th,(€) (Gb571 + GbsaQ)(C7 u)
_ 2|u|_3 N . . .9 Sin2(0/2)
=00 /s b(cos 0) sin(6/2) cos(0/2) <27rz sin?(0/2)(u - ¢) — —

x (2m(u- )2 sin(8/2) + wlul? cos®(0/2)((¢ - §)* + (¢ - k)?))) do

- /ﬂb( 0) sin®(6/2) cos(6/2)i( 'C)*lb( 0) sin®(0/2) cos(0/2)(u - )
= —h(g) i COS Sin COS 27a B COS S1n COS u

— %b(cos 6) sin®(6/2) cos®(0/2)|¢H|2db (34)
23t , ’ / |ul? / ,
-5 /Sin<€/2> [(wuoow (2) = (w-0)* C'(a)) = o I¢ P (H'(@) - C'() | de

ul-3

_ 2_|h|(€) [2i(u- ) () ~ H(sine/2))) ~ (u-¢)* (C1) - Csin(e/2)))

- W#(H(l) — C(1) — H(sin(¢/2)) + C(sin(/2)) )}

We now invoke the properties of functions H(x) and C(z) defined in (18)
and (19), respectively, satisfying conditions (20) as well as the identities h(e) =
H(sin(e/2)) and c(e) = C(sin(e/2)). Thus, replacing in the last terms of the
previous identity in (34), yields

ul=3
|—fl(a><cbe,1 + G, 2)(C ) = [ul 7 (i - Q) — [u’|¢H?) (35)
Jul?

6] (2i(u-QH(1) = (u-Q)*(C(1) = c(e)) = [¢HPlu*(H (1) = C(1) + e(e)))

Note that the first term is exactly the weight derived for the Landau oper-
ator above (14). The second term, having the coefficients C(1), H(1) and c(¢)
bounded, will vanish as ¢ — 0 as long as they are incorporated back into the
weighted integral convolution associated to the Fourier transform of the collision
operator. Indeed, defining

é(Cv u) = Gbg (C, u) -G (<7 u)' (36)
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one obtains

Qo [£1(0) = QrIfNO) + | F{f(0)f(v —u)}OG(C, w)du (37)

R

—QuANO) + [ FlL 0= 0HE)

ul=3
x ['h(g) (2i(u-QOH(1) — (u-Q)*(C(1) — c(e)) — [¢HPlul(H(1) — C(1) + ¢(e)))

+

ul 73 &
Ih(g) Zabg,n(g,u)l du.
n=3

Thus, we need to control the two terms in @(C ,u) in order to estimate the
convergence rate in (37). We notice that the first term is controlled by

‘ |Zl€)3 <2i(u COH1) — (u-0O)}C(1) —cele)) — %|<L|2|u‘2(H(1) —C(1) + C@)))‘ <
12 ¢ KK
|h(e)] (|u|2 * Jul )F' (38)

with the constant T', defined in (20), is finite. In order to control the second
term, we first control the behavior of the n > 3 terms. We estimate:

|u|_3 Z Gbg,n(ga 11)
n=3

T3S (w(u QP (=17 (€ (kY (n) @)

[
n=3 j=0 k=0 v J

x ( / "b(cos(8) cos 1 (6/2) sin =+ (6/2) d@) ( / " i deosi— b d¢>>
(39)

One can check that second bullet condition (15) grants the boundedness of the
polar angular integral involving b(6), and that clearly that azimuthal integration
integral in ¢ is also bounded. Then, the right hand side of inequality (39) is

16



controlled by

o B O s [
<orlCP| Y ————> V() >y
n=3 ’ j=0 J k=0

-n73‘u‘n73|<|n73

= ariep| 3 S 5o (1)

n=3 : j=0

e in73‘u‘n73|g|n73

=2r(¢*| ) — (=1)"

n=3

= 2n[¢)? Z (=tluf[c])"

— (n+3)!
o P2l e
I .
ul  ful? |uf®
<1? |, 2(¢], 2v2sin(2Ju][¢])
<om|¢PP | B+ 2+ | (40)
ul  Jul? jul?
Thus we have that the second term in (37) is controlled by
2nlc* (16 , 20¢] |, 2v/Esin(2luld) )
(@)l \ ful  |uf? |uf?

Gathering the estimates from (38) and (41), we have

2
Gcw) < o (B KDy

(@) N ul>  Jul
2efC[* (IC, 20¢] | 2v/2sin(2lulld])
" |h(e) (Iu ul? * PE ) (42)

Thus,
Qo 1£1(C) = QLlf1(0)]

_ /R F{(0) (0 — w)}(C)

x QZ};;( o(j¢llf + KDy i )

2
< Tl /n F{fe(v )fe(v—U)}(C)‘
‘ <6F|§I2+7TICI5 27/ ¢|* + 6T(| N 27rf|§|35m(2|U||C)> ‘ (43)
[l Jul? Juf?
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Note that sin(2]ul|¢|)/|ul® & 2|¢|/|u|* for |u] << 1, thus all of the terms have
integrable singularities in |u| at zero.
Using the assumption (28) on the Fourier transform of f.(v)f.(v —u), we

QLU - @l < 0 ) 0 aseso0 @

( 1
|H (sin(z/2))]

uniformly in ¢ € R?, and therefore (29) follows immediately. [

Remark 1 The result from this theorem illustrates that the convergence to the
Landau collision operator is highly dependent on the model chosen for b.(cos6).

The classical case of the Rutherford-Coulombic potential corresponds to the
choice of H from (26), and so the limiting behavior in (29) is logarithmically
slow, implying that the time scale for grazing collision effects with the Ruther-
ford potential is much longer than the mean free time between collisions used
in nondimensionalizing the Boltzmann equation. When solving a space inho-
mogeneous problem, this presents a time scale separation between the grazing
collisional terms and the Vlasov terms on the left hand side of a space inho-
mogenous problem. Solving Coulombic interaction problems with finite ¢ should
therefore capture more of the correct physics at the usual time scales for these
types of problems. Furthermore, this potential gives a faster decay rate to equi-
librium than the Landau equation alone owing to the keeping the error term
controlled by logsin(e/2) (as shown in Figure 3).

For other choices of b.(cos @) that satisfy (15), the rate of convergence de-
pends on the strength of the singularity at § = 0 trough the parameter § > 0 as
shown in (27). The choice § = 1 corresponds to the e-linear angular scattering
cross section similar to those used recently in [7]

Thus, as it should be expected, we observe that the choice (16) for the
scattering cross-section gives an e-logarithmic rate of convergence to the solution
of the Landau equation of the order O (|logsin(¢/2)|~!), which is known to be
slow in the parameter € to be studied numerically.

Instead, when choosing the e-linear angular scattering kernel (17), the cor-
responding convergence e-rate of the Boltzmann grazing collision limit to the
solution of the Landau equation yields the limit (29), but with an linear con-
vergence in ¢ instead of e-logarithmic. This faster decay can be observed in our
simulations of the logarithm of the entropy of the corresponding Boltzmann and
Landau solutions in Figure 3. Thus we have [|QL(¢) — Qp.(¢)[| L) = O(e)
for this choice of cross section.

Remark 2 If f(¢,v) is a Maxwellian distribution in v space, the assumption
(28) holds. Indeed, take for ease of presentation that f = e=IVI*/2 Then we
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have that
FUMI - W} = [ e M el eevay
R3
— e—|u|2/2/ e—(v»v—v-u)e_ig.vdv
R3
= e_|u|2/4/ e—lv—u/2|2e—i<‘vdv
R3
= 6_3"’1‘2/4/ e—‘W\ze—igde
R3
1 2 _ 2
Blul? /4~ I¢[*/4

= —€e M
V2 V2(1+ [ul)

IN

(45)

4 The Conservative Numerical Method

4.1 Velocity space discretization

In order to compute the Boltzmann equation we must work on a bounded veloc-
ity space, rather than all of R%. However typical distributions are supported on
the entire domain, for example the Maxwellian equilibrium distribution. Even
if one begins with a compactly supported initial distribution, each evaluation of
the collision operator spreads the support by a factor of /2, thus we must use a
working definition of an effective support of size R for the distribution function.
Bobylev and Rjasanow [9] suggested using the temperature of the distribution
function, which typically decreases as exp(—|v|?/2T) for large |v|, and used a
rough estimate of R ~ 2v/2T to determine the cutoff. Thus, we assume that
the distribution function is negligible outside of a ball

Br,(V(x)) = {v e R : |[v - V(x)| < R.}, (46)

where V(x) is the local flow velocity which depends in the spatial variable x.
For ease of notation in the following we will work with a ball centered at 0 and
choose a length R large enough that Bg, (V(x)) C Br(0) for all x.

With this assumed support for the distribution f, the integrals in (7) will
only be nonzero for u € Bag(0). Therefore, we set L = 2R and define the cube

Cp={veR:|v|<L, j=1,...,d} (47)

to be the domain of computation. With this domain the comptuation of the
weight function integral (11) is cut off at » = L.

Let N € N be the number of points in velocity space in each dimension. Then
we establish a uniform velocity mesh with Av = % and due to the formulation
of the discrete Fourier transform the corresponding uniform Fourier space mesh

size is given by A = %
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4.2 Collision step discretization

To simplify notation we will use one index to denote multidimensional sums
with respect to an index vector m

Z >

m,...,mqg=0

To compute @(Ck), we first compute the Fourier transform integral giving
f(Ck) via the FFT. The weighted convolution integral is approximated using the
trapezoidal rule

N-1

QG) = D Glém, G f(€m) f (G = &m)wm, (48)

m=0

where wy, is the quadrature weight and we set f((k —&m) = 01if ((x — &m) is
outside of the domain of integration. We then use the inverse FFT on @ to
calculate the integral returning the result to velocity space.

Note that in this formulation the distribution function is not periodized, as
is done in the collocation approach of Pareschi and Russo [24]. This is reflected
in the omission of Fourier terms outside of the Fourier domain. All integrals
are computed directly only using the FFT as a tool for faster computation and
the convolution integral is accurate to at least the order of the quadrature. The
calculations below use the trapezoid rule, but in principle Simpson’s rule or
some other uniform grid quadrature can be used. However, it is known that the
trapezoid rule is spectrally accurate for periodic functions on periodic domains
(which is the basis of spectral accuracy for the FFT), and the same arguments
can apply to functions with sufficient decay at the integration boundaries [4].
These accuracy considerations will be investigated in future work. The overall
cost of this step is O(N29).

4.3 Discrete conservation enforcement

This implementation of the collision mechanism does not conserve all of the
quantities of the collision operator. To correct this, we formulate these conser-
vation properties as a Lagrange multiplier problem. Depending on the type of
collisions we can change this constraint set (for example, inelastic collisions do
not preserve energy), but we will focus on the case of elastic collisions, which
preserve mass, momentum, and energy.

Let M = N% be the total number of grid points, let Q = (Ql, ce QM)T
the result of the spectral formulation from the previous section, written in vector
form, and let w; be the quadrature weights over the domain in this ordering.
Define the integration matrix

Wi
Csxm = Viw; )
[vjlPw;
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where v%, i = 1,2, 3 refers to the ith component of the velocity vector. Using this
notation, the conservation method can be written as a constrained optimization
problem.

1~
Find Q = (Q1,...,Qx)" that minimizes §HQ — Q||3 such that CQ = 0 (49)

Formulating this as a Lagrange multiplier problem, we define

M

L(Q,7) =) (Q; - Q)*—7"CQ (50)

j=1
The solution is given by

Q=Q+c(cchHcq

=PxnQ (51)
Overall the collision step in semi-discrete form is given by
of ~
Z_P 52
o = PxQ 2)

The overall cost of the conservation portion of the algorithm is a O(N?)
matrix-vector multiply, significantly less than the computation of the weighted
convolution.

4.4 Computing G for singular scattering kernels

Numerically calculating the weights G to high accuracy can be difficult for
singular scattering kernels, due to the precise nature of the cancellation at the
left endpoint of the integral. The 6 integral in (11) can be simplified as

/7r be(cos ) sin O(cos(c1 (1 — cos ) — ¢3)Jo(ca sinB) — cos(cs))db, (53)

where ¢1, c2, c3 depend on the current values of ¢,r, ¢, following from the full
formulation of G. When ¢ << 1 the bulk of the integration mass occurs near the
left endpoint of the 6 interval, however this presents a challenge for a numerical
quadrature package to compute. For § << 1 there is a subtraction of two nearly
equal numbers (the two cosine terms), which causes floating point errors. To
alleviate this, we split the integration interval into two pieces, and use the first
term of the Taylor expansion of the troublesome part of the integrand for § << 1
and obtain

02 C1 Ve
<42 cos(c3) + 5 sin(c;;)) / 62D, (cos §)db
€

+/ be(cos 0) sin @(cos(cq (1 — cos @) — c3)Jo(ca sinb) — cos(cs))d.
VE
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These integrals are computed using the GNU Scientific Laboratory integration
routines [14]. We use cquad to compute the first 6 integral, which appears to be
most stable choice for this near-singular integrand. The adaptive Gauss-Konrod
quadrature qag is used for all other integrals used in computing the weights G.
Speedup of this high-dimensional calculation is done using OpenMP and MPI
on a cluster, as each weight can be calculated independently [16, 19].

5 Numerical results

To illustrate that this method captures the correct behavior for grazing colli-
sions, we take a Coulombic potential (A = —3) and set ¢ = 10~%. Similar to
what was done in [10, 25] based on the original work of Rosenbluth et al. [27]
for the Landau equation, we set the axially symmetric initial condition

2
f(v,0) = 0.01exp <_10 <V|0—303) ) .

Using the e-linear cross section (17), we take a domain size of L = 1, glancing
parameter € = 1074, N = 16, and compute to time ¢t = 900 with a timestep of
0.01. The results are shown in Figure 1. Note that our symmetric grid is not
aligned with v; = 0, so it is slighly offset from the figures from the earlier works.

To verify the linear convergence rate for the artificial cross section, we take
a single timestep of the example above for £ = 1071,1072,1072,10~* with the
artificial cross section (17). We compare these values with the result of a single
step of the Landau equation (14). We represent the error by examining the
difference in the values in the central slice of the solution, which are the same
values plotted in Figures 1 and 2. In Table 1 we present the average error
between the Landau and Boltzmann solution in this subset. As expected, the
convergence is linear.

€ average |Qr — Q| ratio
1071 1.35 x 107%

10~2 1.47 x 107° 8.98
1073 1.51 x 1076 9.68
1074 1.52 x 1077 9.89

Table 1: Error between Boltzmann collision operator with grazing collisions and
Landau collision operator

In Figure 2 we plot the evolution of the Boltzmann equation using the
Rutherford cross section (16) and compare it to the numerical solution of the
Landau equation. We again take L = 1, ¢ = 1074, and N = 16. This figure
illustrates the large error between the two models for this cross section, as well
as the different convergence rates to equlibrium. Indeed, we can see this more
explicitly in Figure 3, where we can see the solution of the Boltzmann equation
converges to equilibrium at a faster rate than the Landau equation.
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Here we remark that the recent work of Bobylev and Potapenko [7] proves
that the order of approximation between the Boltzmann and Landau operators is
no worse than /g, which would seem to contradict our logarithmic convergence
result. However, the Rutherford potential does not satisfy the assumptions on
the scattering kernel in their work, so there is no contradiction.

Due to the spectral formulation some of the grid values may be negative.
Recent work by Alonso, Gamba, and Tharkabhushanam [3] has shown that
the scheme maintains its spectral properties provided that the ‘energy’ of the
negative grid points remains small compared to the energy of the rest of the
computed distribuition. In Figure 4 we plot the percentage

Jp |f=I[v[*dv
Ip f+lolPdv

where f_ is the grid cells where the discrete distribution function is negative
and vice versa for f,.

x107°

I

L
I

=
o

<ol
o
[6)]
-

Figure 1: Slice of the distribution marginal function at times t =
0,9,36,81,144,225,900. Solid lines: Hermite spline reconstruction of Landau
equation solution. Solid circles: Boltzmann solution with artificial cross section
(17) . e =107%, N = 16.

6 Conclusions and future work
We have derived the spectral formulation for the more general case of anisotropic

collisional models for the Boltzmann equation. We also showed that the spec-
tral method for the Boltzmann equation is consistent with the limiting Landau
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equation under suitable assumptions on the scattering kernel, and that using the
grazing collision Boltzmann equation may capture more of the correct physics
in the case of Coulombic interactions. One other important thing to note is that
this method could be a good candidate for collisional models where the collision
mechanism is unknown and only experimentally determined, and future work
will attempt to simulate the Boltzmann equations with these cross sections. In
addition, as the Landau equation is used to model collisions of charged particles
in plasma we will seek to add field effects to the space inhomogeneous Boltzmann
equation, resulting in the Boltzmann-Poisson or Boltzmann-Maxwell systems.
The inhomogeneous method uses operator splitting between the collision and
the transport terms, so in principle one can use an already developed Vlasov
solver for the spatial terms in the equation.
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(b) Long times

Figure 2: Comparisons of solutions to Boltzmann using Rutherford cross section
(16) and to Landau equations. (a) Slice of the distribution marginal function
at early times ¢ = 0, 1,2,5,10. (b) Slice of the distribution marginal function at
times t = 0,9, 36,81, 144, 225,900. Solid lines: spline reconstruction of Landau
equation solution. Dashed lines with solid circles: spline reconstruction of Boltz-
mann equation. Spline reconstruction uses Hermite polynomials for times below
t = 10 to avoid a reconstruction the generate negative values in the marginal
tails € = 1074, N = 16.
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Figure 3: Convergence of entropy to equilibrium: Log of entropy decay for Boltz-
mann solution with the Rutherford cross section (16) with crosses, Boltzmann
solution with the e-linear cross section (17) with circles, and Landau solution
with solid curve. N = 16, e = 1074,
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Figure 4: Ratio of energy in negative grid points to energy in positive grid
points.
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