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Abstract. In this note we prove an explicit formula for the lower semicontinuous envelope of
some functionals defined on real polyhedral chains. More precisely, denoting by H : R → [0,∞)
an even, subadditive, and lower semicontinuous function with H(0) = 0, and by ΦH the
functional induced by H on polyhedral m-chains, namely

ΦH(P ) :=
N∑

i=1

H(θi)Hm(σi), for every P =
N∑

i=1

θiJσiK ∈ Pm(Rn),

we prove that the lower semicontinuous envelope of ΦH coincides on rectifiable m-currents with
the H-mass

MH(R) :=
ˆ

E

H(θ(x)) dHm(x) for every R = JE, τ, θK ∈ Rm(Rn).
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1. Introduction

LetH : R→ [0,∞) be an even, subadditive, and lower semicontinuous function, with H(0) = 0.
The function H naturally induces a functional ΦH on the set of polyhedral m-chains in Rn,
which can be thought as the space of linear combinations of m-simplexes with real coefficients.
For every polyhedral m-chain of the form P =

∑N
i=1 θiJσiK (with non-overlapping m-simplexes

σi), we set

ΦH(P ) :=
N∑
i=1

H(θi)Hm(σi).

It is easy to see that the above assumptions on H are necessary for the functional ΦH to be
(well defined and) lower semicontinuous on polyhedral chains with respect to convergence in flat
norm. In this note, we prove that they are also sufficient, and moreover we show that the lower
semicontinuous envelope of ΦH coincides on rectifiable m-currents with the H-mass, namely the
functional

MH(R) :=
ˆ
E
H(θ(x)) dHm(x), for every rectifiable m-current R = JE, τ, θK.

The validity of such a representation has recently attracted some attention. For instance,
it is clearly assumed in [Xia03] for the choice H(x) = |x|α, with α ∈ (0, 1) , in order to prove
some regularity properties of minimizers of problems related to branched transportation (see
also [PS06], [BCM09], [Peg]) and in [CMF16] in order to define suitable approximations of the
Steiner problem, with the choice H(x) = (1 + β|x|)1R\{0}, where β > 0 and 1A denotes the
indicator function of the Borel set A.

We finally remark that in the last section of [Whi99a] the author sketches a strategy to prove
an analogous version of the main theorem of the paper (Theorem 2.4 below) in the framework of
flat chains with coefficients in a normed abelian group G. Motivated by the relevance of such
result for real valued flat chains, the ultimate aim of our note is to present a self-contained
complete proof of it when G = R.
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2. Notation and Main Result

If 0 ≤ m ≤ n, then compactly supported m-dimensional currents, rectifiable m-currents,
polyhedral m-chains, and flat m-chains in Rn with real coefficients will be denoted Em(Rn),
Rm(Rn), Pm(Rn) and Fm(Rn), respectively. In what follows, we briefly recall the relevant
definitions of the above classes of currents; for the basic definitions about currents, such as the
boundary operator ∂, the support spt, and the mass norm M, we refer the reader to [Sim83].
Let us denote by Λm(Rn) the vector space of m-covectors in Rn. A current R is in Rm(Rn) if
its action on any differential m-form ω ∈ Dm(Rn) := C∞c (Rn; Λm(Rn)) can be expressed by

〈R,ω〉 =
ˆ
E
〈ω(x), τ(x)〉 θ(x) dHm(x), (2.1)

where E b Rn is countably m-rectifiable, τ(x) is an Hm-measurable, unit, simple m-vector field
orienting the approximate tangent space Tan(E, x) atHm-a.e. x ∈ E, and θ ∈ L1(Hm E; (0,∞))
is a positive-valued multiplicity. If R is given by (2.1), we will write R = JE, τ, θK. We remark
that the rectifiable currents we are considering all have finite mass and compact support. A
polyhedral chain P ∈ Pm(Rn) is a rectifiable current which can be written as a linear combination

P =
N∑
i=1

θiJσiK, (2.2)

where θi ∈ (0,∞), the σi’s are non-overlapping, oriented, m-dimensional, convex polytopes
(finite unions of m-simplexes) in Rn and JσiK = Jσi, τi, 1K, τi being a constant m-vector orienting
σi. If P ∈ Pm(Rn), then its flat norm is defined by

F(P ) := inf{M(S) + M(P − ∂S) : S ∈ Pm+1(Rn)}.
Flat m-chains can be therefore defined to be the F-completion of Pm(Rn) in Em(Rn).

We remark that for the spaces of currents considered above the following chain of inclusions
holds:

Pm(Rn) ⊂ Rm(Rn) ⊂ Fm(Rn) ∩ {T ∈ Em(Rn) : M(T ) <∞}. (2.3)
The flat norm F extends to a functional (still denoted F) on Em(Rn), which coincides on

Fm(Rn) with the completion of the flat norm on Pm(Rn), by setting:
F(T ) := inf{M(S) + M(T − ∂S) : S ∈ Em+1(Rn)}. (2.4)

In the sequel, we will also use the following equivalent characterization of the flat norm of a
flat chain (cf. [Fed69, 4.1.12] and [Mor09, 4.5]). If T ∈ Fm(Rn) and K ⊂ Rn is a ball such that
spt(T ) ⊂ K, then
F(T ) = sup{〈T, ω〉 : ω ∈ Dm(Rn) with ‖ω‖C0(K;Λm(Rn)) ≤ 1, ‖dω‖C0(K;Λm+1(Rn)) ≤ 1}. (2.5)

Assumption 2.1. In what follows, we will consider a Borel function H : R→ [0,∞) satisfying
the following hypotheses:

(H1) H(0) = 0 and H is even, namely H(−θ) = H(θ) for every θ ∈ R;
(H2) H is subadditive, namely H(θ1 + θ2) ≤ H(θ1) +H(θ2) for every θ1, θ2 ∈ R;
(H3) H is lower semicontinuous, namely H(θ) ≤ lim infj→∞H(θj) whenever θj is a sequence

of real numbers such that |θ − θj | ↘ 0 when j ↑ ∞.

Remark 2.2. Observe that the hypotheses (H2) and (H3) imply that H is in fact countably
subadditive, namely

H

 ∞∑
j=1

θj

 ≤ ∞∑
j=1

H(θj),
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for any sequence {θj}∞j=1 ⊂ R such that
∑∞
j=1 θj converges.

Remark 2.3. Let H̃ : [0,∞)→ [0,∞) be any Borel function satisfying:
(H̃1) H̃(0) = 0;
(H̃2) H̃ is subadditive and monotone non-decreasing, i.e. H̃(θ1) ≤ H̃(θ2) for any 0 ≤ θ1 ≤ θ2;
(H̃3) H̃ is lower semicontinuous,

and let H : R→ [0,∞) be the even extension of H̃, that is set H(θ) := H̃(|θ|) for every θ ∈ R.
Then, the function H satisfies Assumption 2.1.

Let H be as in Assumptions 2.1. We define a functional ΦH : Pm(Rn) → [0,∞) as follows.
Assume P ∈ Pm(Rn) is as in (2.2). Then, we set

ΦH(P ) :=
N∑
i=1

H(θi)Hm(σi). (2.6)

The functional ΦH naturally extends to a functional MH , called the H-mass, defined on
Rm(Rn) by

MH(R) :=
ˆ
E
H(θ(x)) dHm(x), for every R = JE, τ, θK ∈ Rm(Rn). (2.7)

We also define the functional FH : Fm(Rn)→ [0,∞] to be the lower semicontinuous envelope
of ΦH . More precisely, for every T ∈ Fm(Rn) we set

FH(T ) := inf
{

lim inf
j→∞

ΦH(Pj) : Pj ∈ Pm(Rn) with F(T − Pj)↘ 0
}
. (2.8)

The main result of the paper is the following theorem.

Theorem 2.4. Let H satisfy Assumption 2.1. Then, FH ≡MH on Rm(Rn).

In order to prove Theorem 2.4, we adopt the following strategy. First, we show that the
functional MH is lower semicontinuous on rectifiable currents, with respect to the flat convergence,
as in the following proposition, with A = Rn. If T = JE, τ, θK and B ⊂ Rn is a Borel set, we
denote the restriction of T to B by setting T B := JE ∩ B, τ, θK ∈ Rm(Rn). The restriction
operator analogously extends to all currents which can be represented by integration.

Proposition 2.5. Let H satisfy Assumption 2.1, and let A ⊂ Rn be open. Let Tj , T ∈ Rm(Rn)
be rectifiable m-currents such that F(T − Tj)↘ 0 as j →∞. Then

MH(T A) ≤ lim inf
j→∞

MH(Tj A). (2.9)

Next, we observe that, as an immediate consequence of Proposition 2.5 and of the properties
of the lower semicontinuous envelope, it holds

MH(R) ≤ FH(R) for every R ∈ Rm(Rn). (2.10)
The opposite inequality, which completes the proof of Theorem 2.4, is obtained as a consequence

of the following proposition, which provides a polyhedral approximation in flat norm of any
rectifiable m-current R with H-mass and mass close to those of the given R.

Proposition 2.6. Let H be any Borel function satisfying (H1) in Assumption 2.1, and let
R ∈ Rm(Rn) be rectifiable. For every ε > 0 there exists a polyhedral m-chain P ∈ Pm(Rn) such
that

F(R− P ) ≤ ε, ΦH(P ) ≤MH(R) + ε and M(P ) ≤M(R) + ε. (2.11)

Theorem 2.4 characterizes the lower semicontinuous envelope FH on rectifiable currents to be
the (possibly infinite) H-mass MH . Without further assumptions on H, the lower semicontinuous
envelope FH can have finite values on flat chains which are non-rectifiable (for instance, the choice
H(θ) := |θ| induces the mass functional FH = M). If instead we add the natural hypothesis
that H is monotone non-decreasing on [0,∞), then there is a simple necessary and sufficient
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condition which prevents this to happen in the case of flat chains with finite mass, thus allowing
us to obtain an explicit representation for FH on all flat chains with finite mass.

Proposition 2.7. Let H be as in Assumption 2.1 and monotone non-decreasing on [0,∞). The
condition

lim
θ↘0+

H(θ)
θ

= +∞. (2.12)

holds if and only if

FH(T ) =
{
MH(T ) for T ∈ Rm(Rn),
+∞ for T ∈ (Fm(Rn) ∩ {T ∈ Em(Rn) : M(T ) <∞}) \Rm(Rn).

(2.13)

3. Proof of Proposition 2.5

This section is devoted to the proof of Proposition 2.5. It is carried out by slicing the rectifiable
currents Tj and T and reducing the proposition to the lower semicontinuity of 0-dimensional
currents. Some of the techniques here adopted are borrowed from [DH03, Lemma 3.2.14].

We recall some preliminaries on the slicing of currents. Given m ≤ n, let I(n,m) be the set
of m-tuples (i1, . . . , im) with

1 ≤ i1 < . . . < im ≤ n.
Let {e1, . . . , en} be an orthonormal basis of Rn. For any I = (i1, . . . , im) ∈ I(n,m), let

VI be the m-plane spanned by {ei1 , . . . , eim}. Given an m-plane V , we will denote pV the
orthogonal projection onto V . If V = VI for some I, we write pI in place of pVI

. Given a current
T ∈ Fm(Rn), a Lipschitz function f : Rn → Rk for some k ≤ m and y ∈ Rk, we denote by
〈T, f, y〉 the (m− k)-dimensional slice of T in f−1(y) (see [Fed69, Section 4.3]). Intuitively, this
can be thought as the “intersection” of the current T with the level set f−1(y).

Let us denote by Gr(n,m) the Grassmannian of m-dimensional planes in Rn, and by γn,m
the Haar measure on Gr(n,m) (see [KP08, Section 2.1.4]).

In the following lemma, we prove a version of the integral-geometric equality for the H-mass,
which is a consequence of [Fed69, 3.2.26; 2.10.15] (see also [DH03, (21)]). We observe that the
hypotheses (H2) and (H3) on the function H are not needed here, and indeed Lemma 3.1 below
is valid for any Borel function H for which the H-mass MH is well defined.

Lemma 3.1. Let E ⊆ Rn be m-rectifiable. Then there exists c = c(n,m) such that the following
integral-geometric equality holds:

Hm(E) = c

ˆ
Gr(n,m)

ˆ
Rm

H0(p−1
V ({y}) ∩ E) dHm(y) dγn,m(V ). (3.1)

In particular, if R ∈ Rm(Rn),

MH(R) = c

ˆ
Gr(n,m)×Rm

MH

(
〈R, pV , y〉

)
d(γn,m ⊗Hm)(V, y). (3.2)

Proof. The equality (3.1) is proved in [Fed69, 3.2.26; 2.10.15]. For any Borel set A ⊂ Rn,
denoting f = 1A, (3.1) implies thatˆ

E
f(x) dHm(x) = c

ˆ
Gr(n,m)

ˆ
Rm

ˆ
E
f(x) 1p−1

V ({y})(x) dH0(x) dHm(y) dγn,m(V ). (3.3)

Since the previous equality is linear in f , it holds also when f is piecewise constant. Since
the measure Hm E is σ-finite, the equality can be extended to any measurable function
f ∈ L1(Hm E). The case f /∈ L1(Hm E) follows from the Monotone Convergence Theorem
via a simple truncation argument.

Taking R = JE, θ, τK, and applying (3.3) with f(x) = H(θ(x)), we deduce that

MH(R) = c

ˆ
Gr(n,m)

ˆ
Rm

ˆ
E∩p−1

V ({y})
H(θ(x)) dH0(x) dHm(y) dγn,m(V ).

4



We observe that the right-hand side coincides with the right-hand side in (3.2) since for Hm-a.e.
y ∈ Rm the 0-dimensional current 〈R, pV , y〉 is concentrated on the set E∩p−1

V (y) and its density
at any x ∈ E ∩ p−1

V (y) is θ(x). �

We prove the lower semicontinuity in (2.9) by an explicit computation in the case m = 0.
Then, by slicing, we get the proof for m > 0, too.

Proof of Proposition 2.5. Step 1: the case m = 0. Let Tj := JEj , τj , θjK, T := JE, τ, θK ∈ R0(Rn)
be such that F(T − Tj)↘ 0 as j →∞. Since T A is a signed, atomic measure, we write

T A =
∑
i∈N

τ(xi)θ(xi)δxi

for distinct points {xi}i∈N ⊆ E ∩A, orientations τ(xi) ∈ {−1, 1}, and for θ(xi) > 0. Fix ε > 0
and let N = N(ε) ∈ N be such that

MH(T A)−
N∑
i=1

H(θ(xi)) ≤ ε if MH(T A) <∞ (3.4)

and
N∑
i=1

H(θ(xi)) ≥
1
ε

otherwise. (3.5)

Since H is positive, even, and lower semicontinuous, for every i ∈ {1, . . . , N} it is possible to
determine ηi = ηi(ε, θ(xi)) > 0 such that

H(θ) ≥ (1− ε)H(θ(xi)) for every |θ − τ(xi)θ(xi)| < ηi. (3.6)

Moreover, for every i ∈ {1, . . . , N} there exists 0 < ri < min{dist(xi, ∂A), 1} such that the balls
B(xi, ri) are pairwise disjoint, and moreover such that for every ρ ≤ ri it holds∣∣∣∣∣∣τ(xi)θ(xi)−

∑
x∈E∩B(xi,ρ)

τ(x)θ(x)

∣∣∣∣∣∣ ≤ ηi
2 . (3.7)

Our next aim is to prove that in sufficiently small balls and for j large enough, the sum of the
multiplicities of Tj (with sign) is close to the sum of the multiplicities of T . In order to do this,
we would like to test the current T − Tj with the indicator function of each ball. Since this test
is not admissible, we have to consider a smooth and compactly supported extension of it outside
the ball, provided we can prove that the flat convergence of Tj to T localizes to the ball. From
this, our claimed convergence of the signed multiplicities follows by the characterization of the
flat norm in (2.5).

To make this formal, we define η0 := min1≤i≤N ηi and r0 := min1≤i≤N ri. Let j0 be such that

F(T − Tj) ≤
η0r0
16 for every j ≥ j0.

By the definition (2.4) of flat norm, there exist Rj ∈ E0(Rn), Sj ∈ E1(Rn) such that T − Tj =
Rj + ∂Sj with M(Rj) + M(Sj) ≤ η0r0

8 for every j ≥ j0. Observe that the mass and the mass of
the boundary of both Rj and Sj are finite, and thus by [Fed69, 4.1.12] it holds Rj ∈ F0(Rn) and
Sj ∈ F1(Rn). We want to deduce that for every i ∈ {1, . . . , N} there exists ρi ∈

( r0
2 , r0

)
such

that
F((T − Tj) B(xi, ρi)) ≤

η0
2 .

Indeed, for any fixed i ∈ {1, . . . , N} one has that for a.e. ρ ∈
( r0

2 , r0
)

(T − Tj) B(xi, ρ) = Rj B(xi, ρ) + (∂Sj) B(xi, ρ)
= Rj B(xi, ρ)− 〈Sj ,d(xi, ·), ρ〉+ ∂ (Sj B(xi, ρ)) ,

(3.8)
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where d(xi, z) := |xi− z| and where the last identity holds by the definition of slicing for currents
with finite mass and finite mass of the boundary, the so called normal currents (cf. [Fed69,
4.2.1]). On the other hand, by [Fed69, 4.2.1] we haveˆ r0

r0
2

M(〈Sj , d(xi, ·), ρ〉) dρ ≤M(Sj (B(xi, r0) \B(xi,
r0
2 ))) ≤ η0r0

8 .

Hence, there exists ρi ∈
( r0

2 , r0
)
such that

M(〈Sj ,d(xi, ·), ρi〉) ≤
η0
4 . (3.9)

We conclude from (3.8) that
F((T − Tj) B(xi, ρi)) ≤M(Rj B(xi, ρi)) + M(〈Sj , d(xi, ·), ρi〉) + M(Sj B(xi, ρi))

(3.9)
≤ η0r0

4 + η0
4 ≤

η0
2 .

(3.10)

Using the characterization of the flat norm in (2.5), and testing the currents (T −Tj) B(xi, ρi)
with any smooth and compactly supported function φi : Rn → R which is identically 1 on B(xi, ρi),
we obtain ∣∣∣∣∣∣

∑
x∈E∩B(xi,ρi)

τ(x)θ(x)−
∑

y∈Ej∩B(xi,ρi)
τj(y)θj(y)

∣∣∣∣∣∣ ≤ η0
2 . (3.11)

Combining (3.11) with (3.7), we deduce by triangle inequality that∣∣∣∣∣∣τ(xi)θ(xi)−
∑

y∈Ej∩B(xi,ρi)
τj(y)θj(y)

∣∣∣∣∣∣ ≤ ηi. (3.12)

Finally, using (3.6) and the fact that H is countably subadditive (cf. Remark 2.2), we conclude
that for every j ≥ j0

H(θ(xi)) ≤
1

1− εH

 ∑
y∈Ej∩B(xi,ρi)

τj(y)θj(y)


≤ 1

1− ε
∑

y∈Ej∩B(xi,ρi)
H(θj(y))

= 1
1− εMH(Tj B(xi, ρi)).

Summing over i, since the balls B(xi, ρi) are pairwise disjoint, we get that
N∑
i=1

H(θi) ≤
1

1− ε lim inf
j→∞

N∑
i=1

MH(Tj B(xi, ρi)) ≤
1

1− ε lim inf
j→∞

MH(Tj A).

By (3.4) (or (3.5) in the case that MH(T A) =∞) and since ε is arbitrary, we find (2.9).

Step 2 (Reduction to m = 0 through integral-geometric equality). We prove now Proposition 2.5
for m > 0. Up to subsequences, we can assume

lim
j→∞

MH(Tj A) = lim inf
j→∞

MH(Tj A).

By [Fed69, 4.3.1], for every V ∈ Gr(n,m) it holdsˆ
Rm

F(〈Tj − T, pV , y〉) dy ≤ F(Tj − T ), (3.13)

Integrating the inequality (3.13) in V ∈ Gr(n,m) and using that γn,m is a probability measure
on Gr(n,m) we get

lim
j→∞

ˆ
Gr(n,m)×Rm

F(〈Tj − T, pV , y〉)d(γn,m ⊗Hm)(V, y) ≤ lim
j→∞

F(Tj − T ) = 0.

6



Since the integrand F(〈Tj − T, pV , y〉) is converging to 0 in L1, up to subsequences, we get

lim
j→∞

F(〈Tj − T, pV , y〉) = 0 for γn,m ⊗Hm-a.e. (V, y) ∈ Gr(n,m)× Rm.

We conclude from Step 1 that

MH(〈T, pV , y〉 A) ≤ lim inf
j→∞

MH(〈Tj , pV , y〉 A) for γn,m ⊗Hm-a.e. (V, y) ∈ Gr(n,m)× Rm.

(3.14)
By [AK00, (5.15)], for every V ∈ Gr(n,m) one has 〈T, pV , y〉 A = 〈T A, pV , y〉 for Hm-a.e.

y ∈ Rm.
In order to conclude, we apply twice the integral-geometric equality (3.2). Indeed, using (3.14)

and Fatou’s lemma, we get

MH(T A) = c

ˆ
Gr(n,m)×Rm

MH

(
〈T A, pV , y〉

)
d(γn,m ⊗Hm)(V, y)

≤ c
ˆ
Gr(n,m)×Rm

lim inf
j→∞

MH

(
〈Tj A, pV , y〉

)
d(γn,m ⊗Hm)(V, y)

≤ c lim inf
n→∞

ˆ
Gr(n,m)×Rm

MH

(
〈Tj A, pV , y〉

)
d(γn,m ⊗Hm)(V, y)

= lim inf
j→∞

MH(Tj A).

(3.15)

This concludes the proof of Step 2, so the proof of Proposition 2.5 is complete. �

4. Proof of Proposition 2.6

In order to prove the proposition, we will consider a family of pairwise disjoint balls which
contain the entire mass of the current R, up to a small error. Then, we replace in any of these
balls the current R with an m-dimensional disc with constant multiplicity. Afterwards, we
further approximate each disc with polyhedral chains.

We begin with the following lemma, where we prove that, at many points x in the m-rectifiable
set supporting the current R and at sufficiently small scales (depending on the point), R is close
in the flat norm to the tangent m-plane at x weighted with the multiplicity of R at x.

In this section, given the m-current R = JE, τ, θK, for a.e. x ∈ E we denote with πx the affine
m-plane through x spanned by the (simple) m-vector τ(x) and with Sx,ρ the m-current

Sx,ρ := JB(x, ρ) ∩ πx, τ(x), θ(x)K.

Lemma 4.1. Let ε > 0, and let R = JE, τ, θK be a rectifiable m-current in Rn. There exists a
subset E′ ⊂ E such that the following holds:

(i) M(R (E \ E′)) ≤ ε;
(ii) for every x ∈ E′ there exists r = r(x) > 0 such that for any 0 < ρ ≤ r

F(R (E′ ∩B(x, ρ))− Sx,ρ) ≤ εM(R B(x, ρ)). (4.1)

Proof. Since E is countably m-rectifiable, there exist countably many linear m-dimensional
planes Πi and C1 and globally Lipschitz maps fi : Πi → Π⊥i such that

E ⊂ E0 ∪
∞⋃
i=1

Graph(fi),

with Hm(E0) = 0. We will denote Σi := Graph(fi) ⊂ Rn. For every x ∈
⋃∞
i=1 Σi, we let i(x) be

the first index such that x ∈ Σi. Then, for every i ≥ 1, we define Ri := JE ∩ Σi, τ, θiK, where

θi(x) :=
{
θ(x) if i = i(x)
0 otherwise.

(4.2)
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Clearly, R =
∑∞
i=1Ri and M(R) =

∑∞
i=1 M(Ri). Hence, there exists N = N(ε) such that∑
i≥N+1

M(Ri) ≤ ε. (4.3)

Now, recall that x is a Lebesgue point of the function θi with respect to the Radon measure
Hm Σi if

lim
r→0

1
Hm(Σi ∩B(x, r))

ˆ
Σi∩B(x,r)

|θi(y)− θi(x)| dHm(y) = 0.

We define the set E′ ⊂ E by

E′ :=
{
x ∈ E ∩

N⋃
i=1

Σi such that x is a Lebesgue point of θi

with respect to Hm Σi for every i ∈ {1, . . . , N}
}
,

(4.4)

and we observe that (i) follows from (4.3) and [AFP00, Corollary 2.23].
Let us set

L := max{Lip(fi) : i = 1, . . . , N}. (4.5)
Fix i ∈ {1, . . . , N}. For every x ∈ Σi there exists r > 0 such that whenever j ∈ {1, . . . , N} is

such that Σj ∩B(x,
√
nr) 6= ∅, then x ∈ Σj .

Now, fix any point x ∈ E′, and fix an index j ∈ {1, . . . , N} such that x ∈ Σj . If j = i(x),
then θj(x) = θ(x) > 0. Since by the definition of E′

lim
r→0

M(Rj (Σj ∩B(x, r)))
Hm(Σj ∩B(x, r)) = θj(x), (4.6)

then there exists r > 0 such that for any 0 < ρ ≤
√
nr

M(Rj (Σj ∩B(x, ρ)))
Hm(Σj ∩B(x, ρ)) ≥ θj(x)

2 . (4.7)

Again by [AFP00, Corollary 2.23] applied with µ = Hm Σj and f = θj , there exists a radius
r > 0 (depending on x) such thatˆ

Σj∩B(x,ρ)
|θj(y)− θj(x)| dHm(y) ≤ εθj(x)

2 Hm(Σj ∩B(x, ρ))

≤ εM(Rj (Σj ∩B(x, ρ)))
Hm(Σj ∩B(x, ρ)) Hm(Σj ∩B(x, ρ))

≤ εM(Rj B(x, ρ)),

(4.8)

for every 0 < ρ ≤
√
nr.

If, instead, j 6= i(x), then θj(x) = 0 and therefore there exists a radius r > 0 (depending on
x) such that for every 0 < ρ ≤

√
nrˆ

Σj∩B(x,ρ)
θj(y) dHm(y) ≤

εθi(x)(x)
N(1 + L)mH

m(Σj ∩B(x, ρ))

≤ ε

N
θi(x)(x)ωmρm

(4.7)
≤ 2 ε

N
M(Ri(x) B(x, ρ)),

(4.9)

where ωm denotes the volume of the unit ball in Rm.
Fix any point x ∈ E′ and let i = i(x). By possibly reparametrizing fi|Πi∩B(x,r) from the

m-plane tangent to Σi at x, translating and tilting such a plane, we can assume that x = 0,
Πi = {xm+1 = · · · = xn = 0} and∇fi(x) = 0. By possibly choosing a smaller radius r = r(x) > 0,
we may also assume that

|∇fi| ≤ ε in Πi ∩B(x, r). (4.10)
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With these conventions, the current Sx,ρ in the statement reads Sx,ρ = JB(0, ρ) ∩Πi, τ(0), θi(0)K.
We let Fi : Πi×Π⊥i → Rn be given by Fi(z, w) := (z, fi(z)), and we set R̃i := (Fi)]Sx,ρ ∈ Rm(Rn).

By (4.10) and the homotopy formula (cf. [Sim83, 26.23]) applied with g = Fi and f(z, w) :=
(z, 0), we have, denoting C(x, ρ) := (B(x, ρ) ∩Πi)×Π⊥i ,

F(R̃i − Sx,ρ) ≤ C‖g − f‖L∞(C(x,ρ)) (M(Sx,ρ) + M(∂Sx,ρ))
≤ Cερ (M(Sx,ρ) + M(∂Sx,ρ))
≤ Cεθ(x)ωmρm

≤ Cεθ(x)Hm(Σj ∩B(x, ρ))
(4.7)
≤ CεM(Ri B(x, ρ)).

(4.11)

Now, observe that, if we denote by ξi the orientation of Σi induced by the orientation of
Πi ×Π⊥i via Fi, the rectifiable current R̃i reads R̃i = JΣi ∩ C(x, ρ), ξi, θi(x)K (cf. [Sim83, 27.2]).
Therefore, we can compute
M(Ri B(x, ρ)− R̃i) ≤M(Ri B(x, ρ)− R̃i B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))

(4.8)
≤ εM(Ri B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))

(4.10)
≤ εM(Ri B(x, ρ)) + Cεθi(x)Hm(Σi ∩B(x, ρ))

(4.7)
≤ CεM(Ri B(x, ρ)).

(4.12)

Hence, we conclude:

F(R E′∩B(x, ρ)− Sx,ρ) ≤ F(Ri(x) B(x, ρ)− Sx,ρ) +
N∑
j=1

j 6=i(x)

M(Rj B(x, ρ))

(4.9)
≤ F(Ri(x) B(x, ρ)− R̃i) + F(R̃i − Sx,ρ) + 2εM(Ri(x) B(x, ρ))

(4.11),(4.12)
≤ CεM(R B(x, ρ)).

(4.13)

This proves (4.1). �

A straightforward iteration argument yields the following corollary.

Corollary 4.2. Let R = JE, τ, θK be a rectifiable m-current in Rn. Then, for Hm-a.e. x ∈ E

lim
r→0

F(R B(x, r)− Sx,ρ)
M(R B(x, r)) = 0. (4.14)

Proof. For every i ∈ N define the set Ei to be the set E′ given by Lemma 4.1 applied to R with
ε = 2−i−1, and let Fi ⊂ Ei be the set of Lebesgue points of 1Ei (inside Ei) with respect to
θHm E. By [AFP00, Corollary 2.23], the set Fi equals the set Ei up to a set of Hm-measure 0
and for every x ∈ Fi and for ρ sufficiently small (possibly depending on x) it holds

M(R B(x, ρ)−R (Ei ∩B(x, ρ))) =
ˆ

(E\Ei)∩B(x,ρ)
θ dHm

≤ 2−i−1
ˆ
E∩B(x,ρ)

θ dHm = 2−i−1M(R B(x, ρ)).

Hence by Lemma 4.1 for every x ∈ Fi there exists ri(x) > 0 such that for every 0 < ρ < ri(x)
F(R B(x, ρ)− Sx,ρ) ≤M(R B(x, ρ)−R (Ei ∩B(x, ρ))) + F(R (Ei ∩B(x, ρ))− Sx,ρ)

≤ 2−iM(R B(x, ρ))
and

M(R (E \ Fi)) ≤ 2−i−1.
9



Denoting F :=
⋃
i∈N

⋂
j≥i Fj , and noticing that E \F = E ∩F c = E ∩

⋂
i∈N

⋃
j≥i F

c
j is contained

in
⋃
j≥i F

c
j for every i ∈ N, we have

M(R (E \ F )) ≤ lim
i→∞

∞∑
j=i

M(R (E \ Fj)) ≤ lim
i→∞

∞∑
j=i

1
2j = 0

and this implies that Hm(E \F ) = 0. Since every x ∈ F belongs definitively to every Fj (namely,
for every x ∈ F there exists i0(x) ∈ N such that x ∈ Fi for every i ≥ i0(x)), we obtain (4.14). �

Proof of Proposition 2.6. Let R be represented by R = JE, τ, θK with θ ∈ L1(Hm E; (0,∞)).
We denote

µ := θHm E.

Moreover, if MH(R) < +∞, we define the positive finite measure
ν := H(θ)Hm E.

Fix ε > 0. We make the following
Claim: There exists a finite family of mutually disjoint balls {Bi}Ni=1 with Bi := B(xi, ri),

such that the following properties are satisfied:
(i)

ri ≤ ε ∀ i = 1, . . . , N and µ(Rn \ (∪Ni=1Bi)) ≤ ε;
(ii) if we denote Ri := R Bi and Si := Sxi,ri , then

F(Ri − Si) ≤ εµ(Bi);
(iii)

|µ(Bi)− θ(xi)ωmrmi | ≤ εµ(Bi), ∀ i = 1, . . . , N ;
(iv) if MH(R) < +∞, then

H(θ(xi))ωmrmi ≤ (1 + ε)ν(Bi), ∀ i = 1, . . . , N.
Let us for the moment assume the validity of the claim and see how to conclude the proof of

the proposition.
By point (iii) in the claim we deduce

M(Si) ≤ (1 + ε)M(Ri). (4.15)
and by point (iv) we get

MH(Si) ≤ (1 + ε)MH(Ri). (4.16)
On the other hand, we can find a polyhedral chain Pi ∈ Pm(Rn) (supported on πi∩Bi, πi := πxi),
such that

F(Pi − Si) ≤ εµ(Bi), MH(Pi) ≤MH(Si) and M(Pi) ≤M(Si). (4.17)
Indeed, it is enough to approximate the m-dimensional current Si with simplexes with constant
multiplicity and supported in Bi ∩ πi.

To conclude, we denote P :=
∑N
i=1 Pi and we estimate

F(R− P ) ≤
N∑
i=1

F(Ri − Pi) + M(R (Rn \ (∪Ni=1Bi)))

(i)
≤ ε+

N∑
i=1

F(Ri − Si) +
N∑
i=1

F(Si − Pi)
(ii),(4.17)
≤ ε+ 2

N∑
i=1

εµ(Bi) ≤ ε+ 2εM(R).

(4.18)
Moreover

MH(P ) =
N∑
i=1

MH(Pi)
(4.17)
≤

N∑
i=1

MH(Si)
(4.16)
≤ (1 + ε)

N∑
i=1

MH(Ri) ≤ (1 + ε)MH(R) (4.19)
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and

M(P ) =
N∑
i=1

M(Pi)
(4.17)
≤

N∑
i=1

M(Si)
(4.15)
≤ (1 + ε)

N∑
i=1

M(Ri) ≤ (1 + ε)M(R). (4.20)

Proof of the Claim: Consider the set F of points x ∈ E such that the following properties
hold:

(1) x satisfies

lim
r→0

F(R B(x, r)− Sx,r)
M(R B(x, r)) = 0;

(2) denoting ηx,r : Rn → Rn the map y 7→ y−x
r , we have the following convergences of

measures for r → 0:

µx,r := r−m(ηx,r)#(µ B(x, r)) ⇀ θ(x)Hm ((x+ span(τ(x))) ∩B(0, 1)), (4.21)

and

νx,r := r−m(ηx,r)#(ν B(x, r)) ⇀ H(θ(x))Hm ((x+ span(τ(x))) ∩B(0, 1)). (4.22)

We observe that properties (1) and (2) hold for µ-a.e. point. Indeed the fact that (1) holds for
µ-a.e. x follows from Corollary 4.2, while the fact that (2) holds for µ-a.e. x is a consequence of
[DL08, Theorem 4.8]. Moreover, by (4.21) and by (4.22), for every x ∈ F there exists a radius
r(x) < ε such that

|µx,r(B(0, 1))− θ(x)ωm| ≤
ε

2θ(x)ωm, for a.e. r < r(x).

This inequality implies that

|µ(B(x, r))− θ(x)ωmrm| ≤
ε

2θ(x)ωmrm, for a.e. r < r(x), (4.23)

so that in particular

θ(x)
(

1− ε

2

)
ωmr

m ≤ µ(B(x, r)), for a.e. r < r(x).

Plugging the last inequality in the right-hand side of (4.23), we get

|µ(B(x, r))− θ(x)ωmrm| ≤
ε

2− εµ(B(x, r)) ≤ εµ(B(x, r)), for a.e. r < r(x).

which gives condition (iii) of the Claim.
Analogously, we get that

|ν(B(x, r))−H(θ(x))ωmrm| ≤ εν(B(x, r)), for a.e. r < r(x).

The validity of the claim is then obtained via the Vitali-Besicovitch covering theorem ([AFP00,
Theorem 2.19]).

�

5. Proof of Proposition 2.7

We first observe that the condition (2.12) is necessary for the validity of (2.13). Indeed,
consider a map H as in Assumption 2.1 for which (2.12) does not hold. It means that there
exists a constant C > 0 and a sequence {θi}i∈N converging to 0 such that H(θi) ≤ Cθi for every
i ∈ N. We consider now the sequence of polyhedral m-chains {Pi}i∈N supported in the unit cube
[0, 1]n and defined as

Pi :=
Ni∑
j=1

Jπji ∩ [0, 1]n, τ, θiK,

where for i fixed, πji are m-planes parallel to {xm+1 = . . . = xn = 0} whose last (n − m)
coordinates are “uniformly distributed” in [0, 1]n−m, τ is a fixed orientation for all the m-planes
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πji not depending on i or j and Ni := min{N ∈ N : Nθi ≥ 1}. Since θi → 0, then Ni →∞. For
i large enough, so that θiNi ≤ 2, we can compute

ΦH(Pi) =
Ni∑
j=1

ΦH(Jπji ∩ [0, 1]n, τ, θiK) = NiH(θi) ≤ CNiθi ≤ 2C.

Nevertheless, since θiNi → 1, then the sequence {Pi}i∈N converges in flat norm to the m-current
T , acting on m-forms as

〈T, ω〉 =
ˆ

[0,1]n
〈ω(x), τ〉 dLn(x),

which belongs to (Fm(Rn) ∩ {T ∈ Em(Rn) : M(T ) <∞}) \Rm(Rn). Clearly, FH(T ) ≤ 2C.

We show now that, if H is also monotone non-decreasing on [0,∞), then condition (2.12) is
also sufficient to the validity of (2.13). The proof is a consequence of the definition of FH in
(2.8) and the following Lemma (see also [CDRM, Lemma 4.5]):

Lemma 5.1. Assume H is as in Assumption 2.1, is monotone non-decreasing on [0,∞), and
satisfies (2.12). Let {Rj}j∈N ⊂ Rm(Rn) and let us assume that

sup
j∈N

MH(Rj) ≤ C < +∞.

If limj→∞ F(Rj − T ) = 0 for some T ∈ Fm(Rn) with finite mass, then T is in fact rectifiable.

Proof. Step 1. We prove the lemma for m = 0, recalling that a 0-dimensional rectifiable current
R = JE, τ, θK, with τ(x) = ±1, is an atomic signed measure (i.e. a measure supported on a
countable set).

We observe that (2.12) implies that there exists δ0 > 0 such that H(θ) > 0 for every θ ∈ (0, δ0).
We define the monotone non-decreasing function f : [0, δ0)→ [0,+∞) given by

f(θ) :=

supt∈(0,θ]
t

H(t) if 0 < θ < δ0,

0 if θ = 0.

By assumption (2.12), f is continuous in 0 and H(θ)f(θ) ≥ θ. Fix any δ ∈ (0, δ0). For any j ∈ N

M(Rj {x : θj(x) < δ}) =
ˆ
Ej∩{θj<δ}

θj(x) dHm(x) ≤
ˆ
Ej∩{θj<δ}

f(θj(x))H(θj(x)) dHm(x)

≤ f(δ)
ˆ
Ej∩{θj<δ}

H(θj(x)) dHm(x) ≤ f(δ)MH(Rj) ≤ Cf(δ).

Therefore, up to subsequences the sequence {Rj {x : θj(x) < δ}}j∈N converges to a signed
measure R2 of mass less than or equal to Cf(δ). On the other hand, using the upper bound
on MH(Rj) and the monotonicity of H, we deduce that the measures Rj {x : θj(x) ≥ δ} are
supported on a uniformly (with respect to j) bounded number of points, and converge to a
discrete measure R1. Hence, for any ε > 0, the limit T can be written as the sum of a discrete
measure R1 and of an error R2 with mass less than or equal to ε. Since ε is arbitrary, the
statement follows.

Step 2. We prove the claim for m > 0.
We apply [Fed69, 4.3.1] to the sequence {Rj}j∈N to deduce that for any I ∈ I(n,m)

lim
j→∞

ˆ
Rm

F(〈Rj − T, pI , y〉) dy ≤ lim
j→∞

F(Rj − T ) = 0.

Since the sequence of non-negative functions {F(〈Rj − T, pI , ·〉)}j∈N converges in L1(Rm) to 0,
up to a (not relabelled) subsequence, we get the pointwise convergence

lim
j→∞

F(〈Rj − T, pI , y〉) = 0 for Hm-a.e. y ∈ Rm, for every I ∈ I(n,m).
12



We apply the Fatou lemma and [DH03, Corollary 3.2.5(5)] to the sequence {Rj}j∈N to deduceˆ
Rm

lim inf
j→∞

MH(〈Rj , pI , y〉) dy ≤ lim inf
j→∞

ˆ
Rm

MH(〈Rj , pI , y〉) dy ≤ lim inf
j→∞

MH(Rj) ≤ C. (5.1)

Hence the integrand in the left-hand side is finite a.e., namely lim infj→∞MH(〈Rj , pI , y〉) <∞
for Hm-a.e. y ∈ Rm, for every I ∈ I(n,m). Hence we are can apply Step 1 to a.e. slice 〈Rj , pI , y〉
to a y-dependent subsequence and deduce that

〈T, pI , y〉 is 0-rectifiable for Hm-a.e. y ∈ Rm, for every I ∈ I(n,m). (5.2)
To conclude the proof we employ Theorem [Whi99b, Rectifiable slices theorem, pp. 166-167],
which ensures that a finite mass flat chain T is rectifiable if and only if property (5.2) holds. �
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